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Introduction

Lattice simulations allow the systematic investigation of strongly
interacting SUSY gauge theories in the IR regime. Our studies
are focused on the N = 1 Super Yang-Mills theory with gauge
group SU(2), described by the action
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The aim of our investigations is to determine the mass spectrum
of the low-lying bound states of the theory, which is expected to
form two supermultiplets consisting of gluinoballs, glueballs and
gluino-glueballs. By using new algorithms, we are able to deter-
mine the spectrum in large volumes. In our presently running
simulations are performed on 163 × 32 and 243 × 48 lattice at
β = 1.6 corresponding to a box size L ≥ 2fm.

Lattice action

We use the Wilson discretization of the action. To lower artifacts,
induced by the finite lattice spacing, which breaks supersymme-
try and chirality explicitly, we have implemented the tree-level
improved Symanzik action for the gauge part, and we use one
step of STOUT-smearing (smearing parameter ρ = 0.15) for the
fermion part. This is advantageous in view of a speed up of the
simulations and has beneficial effects in the analysis. [Jansen,
2007]
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The gauge action with tree-level improved Symanzik action has
the form
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The fermionic action reads

Sf
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in which the Q-Matrix
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are defined.
In the fermionic matrix, we use STOUT link smearing. The
(n + 1)th stout smeared ”thick” link obtained iteratively from
the nth level
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the staples Cµ are defined as
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An important effect of these improvements is to rise the minimal
eigenvalues and to give a further optimization of the condition
number. In addition we expect a shorter autocorrelation time.
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Aim of investigations

1. Our main goal is to determine the spectrum of bound states
in large volumes with L ≥ 2fm This will be a substantial
improvement of the previous simulations by this collaboration
on small volumes with lattice extensions L ≈ 1fm. In our
presently running simulations on 163 × 32 lattice at β = 1.6
the lattice extensions are about L ≡ 2fm. This we want to
supplement by simulations on 243 × 48 lattice (L ≡ 3fm) and
323 × 64 lattice (L ≡ 4fm). In such large volumes the finite
volume effects are most probably negligible. We can check this
by comparing the results on three increasing volumes.

2. We are going to approach the continuum limit by performing
simulations at β = 1.8 on 243 × 48 lattices.

3. We plan to investigate the first order chiral phase transition at
zero gluino mass on larger lattices compared to our previous
study on 63 × 12 lattice. [Kirchner et.al. 1999]

Update algorithm

The numerical simulations are done with an update algorithm,
which is based on a multi-level polynomial approximation of the
quark determinant and on stochastic update corrections. It is a
development and combination of the polynomial hybrid Monte
Carlo algorithm (PHMC) and the two step multi-bosonic algo-
rithm (TSMB) [Montvay, Scholz, 2005]. We therefore integrate
out the fermion fields and so obtain the square root of the fermion
determinant
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The fermion measure can be derived by “bosonification”. After
a polynomial approximation
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If necessary, we evaluate reweighting corrections including the
sign of the fermion determinant.
The fields are updated by the polynomial hybrid Monte-Carlo
algorithm. The Hamiltonian

H [P, U, φ] =
1
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∑

xµj

P 2
xµj + Sg [U ] + Sf [U, φ]

together with the equations of motion,
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define the updates of fields and momenta. Here you have to
calculate the derivation of the fermionic action,

[

DxµjVµ
]

ab = 2fbjc

[

Vµ
]

ac .

Improvements

The different parts of the update process are sticked together
according to the higher order Sexton-Weingarten integrator with
multiple timescales.
To lower the polynomial order and therefore speed up the system,
we implemented the two-step polynomial algorithm

1/x
1
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(x) P ′′
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(x)

with a noisy correction. To obtain lower conditioned fermion
matrices, the even-odd preconditioning is used.
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.

Another advantage of this optimization is, that the matrix order
is halved.
In addition, a determinant breakup with nB = 2 is used

det Q̃2 =
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)
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.

Deflation

For the calculation of the disconnected parts of propagators, we
use the “Stochastic Estimator Technique” (SET). This part of
the calculation takes a major part of our CPU time in the anal-
ysis procedure, so we are working on deflating methods based on
the ansatz of Stathopoulos and Orginos, to improve matrix in-
versions. [Orginos, Stathopoulos, 2007] Consider e.g. the gluino-
propagator

〈
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With SET, we calculate the disconnected part with
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ii

where ηi is a given source and Zi is the solution vector of Qz =
η. To accelerate the matrix inversion the deflating algorithm of
Stathopoulos and Orginos will be used further on, which is well
suited to extend the Conjugate Gradient algorithm to get a faster
convergence.

• In the first s steps, an eigCG algorithm is used. This is a Con-
jugate Gradient with restarting, in which matrix is collected,
initially consisting of the residual vectors of the CG iteration
step. The smallest eigenpairs are saved.

• The second and ongoing estimators are Galerkin-projected on

a Krylov subspace x0 = W
(

WTAW
)−1

WT b and then in-

verted by CG.

• In the i ≥ s steps, the estimators are Galerkin-projected and
then they will be directly put in CG, because the Krylov sub-
space is approximated well enough and there is no need to
search for the minimal eigenpairs. This part is called InitCG.
The convergence of the algorithm increases after each iteration:

Analysis

We measure the low lying hadron spectrum, i. e. masses of ma−π,
m0+, ma−f0

, ma−η′ and mg̃g.
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κ ama−π 0+(glub.) a-f0 a-η′ g̃g1 g̃gγ0

0.194† 0.484(1) < 0.52(1) < 0.78 0.52(2) 0.40(7) 0.43(1)
0.1955 0.345(3) < 0.4(2) 0.642(-) 0.48(1) 0.673(20) 0.700(21)
0.196 0.264(5) < 0.75(9) 0.814(84) 0.399(45) 0.424(22) 0.472(31)
0.1965 0.208(13) < 0.28(3) - 0.44(14) 0.469(85) 0.472(75)

OZI arguments imply
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1
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κcr
).

Extrapolation: κπ
cr ∼ 0.1969

SUSY Ward-Identities: renormalized gluino mass
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Extrapolation: κWI
cr ∼ 0.1969
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