supersymmetric insights

Alexander Ferling

ITP Münster
June 2, 2008

(1) Supersymmetric Hotspots

- the raise of supersymmetry
- the particle spectrum
- the consequences
- constructing a sym-theory
(2) PHMC-Algorithm
- the path-integral
- polynomial approximation
- evaluating the trajectory
(3) Action Improvements

- speed improvements
- signal improvements
(4) Matrix Inversions
- the reason why
- conjugate gradient algorithm
- krylov spaces
- matrix deflation
- domain decomposition

why supersymmetry?

- aim of investigations: constructing a theory with only one symmetry-group and delivering the standard model by symmetry breaking
- generators of the \mathcal{P} oincaré and Lie-Group \mathcal{I} :

$$
\begin{aligned}
& {\left[P^{\mu}, P^{\nu}\right]=0} \\
& {\left[M^{\mu \nu}, P^{\rho}\right]=} \\
& \begin{aligned}
{\left[M^{\mu \nu}, M^{\rho \sigma}\right] } & =i\left(\eta^{\nu \rho} P^{\mu}-\eta^{\mu \rho} P^{\nu}\right) \quad \leftrightarrow \quad M^{\mu \sigma}+\eta^{\mu \sigma} M^{\nu \rho} \\
& \left.-\eta^{\mu \rho} M^{\nu \sigma}-\eta^{\nu \sigma} M^{\mu \sigma}\right)
\end{aligned}
\end{aligned}
$$

- \rightarrow non-trivial it is impossible (no-go theorem from Coleman \& Mandula '67)

to crack this theorem

- extend the algebra by anti-commutating vectors instead of commutating ones Golfand \& Likhtman ('71)

$$
\begin{aligned}
{[\text { even, even] }} & =\text { even } \\
\text { \{odd, odd }\} & =\text { even } \\
{[\text { even, odd] }} & =\text { odd }
\end{aligned}
$$

- this so called \mathbb{Z}_{2} graded algebra is the only one, consistent with reIQFT

the majorana-spinors Q_{α}

- anti-commuting values are associated with fermionic degrees of freedom \rightarrow generators are majorana/weyl-spinors.

$$
\begin{aligned}
& \text { self-conjugated complex/real dirac spinors } \\
& \qquad \psi_{M}^{C}=\psi_{M}
\end{aligned}
$$

- with commutation- and anticommutation relations

$$
\begin{gathered}
\left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\}=2 \sigma_{\alpha \dot{\beta}}^{\mu} P_{\mu} \\
\left\{Q_{\alpha}, Q_{\beta}\right\}=\left\{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\right\}=\left[Q_{\alpha}, P_{\mu}\right]=\left[\bar{Q}_{\dot{\alpha}}, P_{\mu}\right]=0 \\
{\left[Q_{\alpha}, M_{\mu \nu}\right]=\sigma_{\mu \nu \alpha}^{\beta} Q_{\beta} \quad\left[\bar{Q}^{\dot{\alpha}}, M_{\mu \nu}\right]=\bar{\sigma}_{\mu \nu \dot{\beta}}^{\dot{\alpha}} Q^{\dot{\beta}}}
\end{gathered}
$$

the particle spectrum

- defining the Pauli-Lubanski-Vector W_{μ}

$$
\begin{aligned}
& W_{\mu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} P^{\nu} M^{\rho \sigma}, \quad X^{\mu}=Q \sigma^{\mu} \bar{Q} \\
& Y:=W^{\mu}-\frac{1}{4} X^{\mu}, \quad\left[Y_{\mu}, Y_{\nu}\right]=i m \epsilon^{\mu \nu \sigma} Y^{\sigma}, \quad\left(\frac{Y}{m}\right)=y(y+1) \\
& (\mathrm{m}, 0) \longrightarrow \text { skalares Teilchen } \\
& (\mathrm{m}, 1 / 2)
\end{aligned}
$$

the particle spectrum

the consequences

- solution for the hierarchy-problem
- fewer divergencies
- local supersymmetry $\phi_{i}^{\prime}(x)=U_{i}^{j} \phi_{j}(x) \rightarrow U_{i}^{j}(x) \phi_{j}(x)$ \rightarrow SUGRA (with ART in the low energy limit)
- TOE's only consistent with space-time supersymmetry
- quark confinement
- breaking electroweak interaction is a consequence of supersymmetry breaking

Wess-Zumino-Model '74

- take the action-functional

$$
S[\phi]=\int d^{4} x \mathcal{L}(\phi, \partial \phi)
$$

- calculate the invariance under variation of the Poincaré-Group \mathcal{P}

$$
\delta S[\phi]=\int d^{4} x \delta \mathcal{L}
$$

- with the extension

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, \theta^{1}, \theta^{2}, \bar{\theta}_{\dot{1}}, \bar{\theta}_{\dot{2}}\right)
$$

- and transformations

$$
\theta \rightarrow \theta+\eta, \quad \bar{\theta} \rightarrow \bar{\theta}+\bar{\eta} \quad x^{\mu} \rightarrow x^{\mu}+a^{\mu}-i \eta \sigma^{\mu} \bar{\theta}+i \theta \sigma^{\mu} \bar{\eta}
$$

the continuums lagrangian

- equation of motion should be invariant under supersymmetric transformations

$$
\frac{\partial}{\partial x_{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial \phi / \partial x_{\mu}\right)}\right)-\frac{\partial \mathcal{L}}{\partial \phi}=0
$$

- the simplest supersymmetric \mathcal{L} agrangian for the chiral multiplet

$$
\mathcal{L}_{\text {chiral }}=\mathcal{L}_{\text {scalar }}+\mathcal{L}_{\text {fermion }}=-\partial^{\mu} \phi^{*} \partial_{\mu} \phi-i \psi^{t} \bar{\sigma}^{\mu} \partial_{\mu} \psi
$$

- the interaction between fermion- and boson-fields should be yukawa-like and renormalisable. the product $\phi^{\dagger} \phi$ leads to a vektor-superfield
- Super-Yang-Mills with symmetry breaking term

$$
\mathcal{L}=\mathcal{L}_{S Y M}+m \bar{\lambda} \lambda
$$

on-shell action/Curci-VEnEZIANo lattice action ('87)

- ...further constructions and restrictions...
- leads to the euclidean on-shell continuum-action

$$
S_{S Y M}=\int d^{4} x\left\{\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}+\frac{1}{2} \bar{\lambda}^{a} \gamma^{\mu} \nabla_{\mu} \lambda^{a}\right\}
$$

- putting it on the lattice leads to $S_{l a t}=S_{g}+S_{f}$ with

$$
\begin{aligned}
S_{g}[U]= & \beta \sum_{x} \sum_{\mu \nu}\left[1-\frac{1}{N_{c}} \operatorname{Re} \operatorname{Tr} U_{\mu \nu}\right] \\
S_{f}[U, \bar{\lambda}, \lambda]= & \frac{1}{2} \sum_{x} \bar{\lambda}(x) \lambda(x)+ \\
& \frac{\kappa}{2} \sum_{x} \sum_{\mu}\left[\bar{\lambda}(x+\hat{\mu}) V_{\mu}(x)\left(r+\gamma_{\mu}\right) \lambda(x)\right. \\
& \left.\quad+\bar{\lambda}(x) V_{\mu}^{T}(x)\left(r-\gamma_{\mu}\right) \lambda(x+\hat{\mu})\right]
\end{aligned}
$$

some comments on Q and V-matrix

- by defining the Q-Matrix

$$
Q_{y, x}[U] \equiv \delta_{y x}-\kappa \sum_{\mu}\left[\delta_{y, x+\hat{\mu}}\left(1+\gamma_{\mu}\right) V_{\mu}(x)+\delta_{y+\hat{\mu}}\left(1-\gamma_{\mu}\right) V_{\mu}^{T}(y)\right]
$$

- we can write S_{f} more compactly as

$$
S_{f}=\frac{1}{2} \sum_{x y} \bar{\lambda}(x) Q_{x, y} \lambda(y)=\frac{1}{2} \sum_{x y} \lambda^{T}(x) \mathcal{C} Q_{x, y} \lambda(y)
$$

- the adoint matrices have the form

$$
\left[V_{\mu}(x)\right]_{a b} \equiv 2 \operatorname{Tr}\left[U_{\mu}^{\dagger}(x) T^{a} U_{\mu}(x) T^{b}\right]
$$

(1) Supersymmetric Hotspots

- the raise of supersymmetry
- the particle spectrum
- the consequences
- constructing a sym-theory
(2) PHMC-Algorithm
- the path-integral
- polynomial approximation
- evaluating the trajectory

Action Improvements

- speed improvements

- signal improvements
(4) Matrix Inversions
- the reason why
- conjugate gradient algorithm
- krylov spaces
- matrix deflation
- domain decomposition

multi-bosonic representation

- it's not feasible to simulate Grassmann fields directly, because $e^{-S_{F}}=e^{-\bar{\phi} D \phi}$ is not positive \rightarrow poor importance sampling
- we therefore integrate out the fermion fields to obtain the fermion determinant

$$
\int[d \lambda] e^{-S_{f}}=\int[d \lambda] e^{-\frac{1}{2} \bar{\lambda} Q \lambda}= \pm \sqrt{\operatorname{det} Q}
$$

- questions concerning the \pm-sign \rightarrow ask Jair
- now we turn around - that thing is calles "bosonification", with $\sqrt{\operatorname{det} Q}=\left[\operatorname{det}\left(Q^{\dagger} Q\right)\right]^{\frac{1}{4}}$. In QCD you have

$$
\operatorname{det}\left(Q^{\dagger} Q\right)=\int\left[d \phi^{\dagger} d \phi\right] \exp \left(-\sum_{x y} \phi_{y}^{\dagger}\left[Q^{\dagger} Q\right]_{y x}^{-1} \phi_{x}\right)
$$

polynomial approximation

- use the approximation

$$
\lim _{n \rightarrow \infty} P_{n}(x)=\left[\frac{1}{x}\right]^{\frac{1}{4}} \quad \forall x \in[\epsilon, \lambda]
$$

keep in mind the condition number

$$
\sqrt{\lambda / \epsilon}
$$

- choose the polynom

$$
P\left(\tilde{Q}^{2}\right)=c_{0}\left(\tilde{Q}-\rho_{1}\right)\left(\tilde{Q}-\rho_{2}\right) \ldots\left(\tilde{Q}-\rho_{n}\right)\left(\tilde{Q}-\rho_{n}^{*}\right) \ldots\left(\tilde{Q}-\rho_{1}^{*}\right)
$$

- so in our simulation, we have

$$
\sqrt{\operatorname{det} Q}=\left[\operatorname{det}\left(Q^{\dagger} Q\right)\right]^{\frac{1}{4}}=\int\left[d \phi^{\dagger} d \phi\right] \exp \left(-\sum_{x y} \phi_{y}^{\dagger}\left(P\left(\tilde{Q}^{2}\right)\right)_{y x} \phi_{x}\right)
$$

the hamiltonian

- update the field globally
- takes large steps through configuration space
- we introduce a fictitious Hamiltonian

$$
H[P, U, \phi]=\frac{1}{2} \sum_{x \mu j} P_{x \mu j}^{2}+S_{g}[U]+S_{f}[U, \phi]
$$

- the action plays the role of a fictitious potential
- HMC-Markov-Chain alternates two Markov-Steps:

Molecular Dynamics Monte Carlo and Moment Refreshment (together they are ergodic)

equations of motion

- these are the hamilton equations of motion

$$
\frac{d P_{x \mu j}}{d \tau}=-D_{x \mu j} S, \quad \frac{d U_{x \mu}}{d \tau}=i P_{x \mu j} U_{x \mu}
$$

- to update of momenta and fields

$$
U_{x \mu}^{\prime}=\exp \left\{\sum_{j} i 2 T_{j} P_{x \mu j} \Delta \tau\right\} U_{x \mu}, \quad P_{x \mu j}^{\prime}=P_{x \mu j}-D_{x \mu j} S[U, \phi] \Delta \tau
$$

- you have to derive the fermionic derivative $\left(\left[D_{x \mu j} V_{\mu}\right]_{a b}=2 f_{b j c}\left[V_{\mu}\right]_{a c}\right)$

$$
\begin{aligned}
& D_{x \mu j} S_{f}[U, \phi]= \\
& \sum_{k=0}^{n-1}\left(\phi_{1, a}^{(k)}(x)\left(D_{x \mu j} \tilde{Q}\right) \phi_{2, b}^{(k) \dagger}(y)\right)+\sum_{k=0}^{n-1}\left(\phi_{2, a}^{(k)}(x)\left(D_{x \mu j} \tilde{Q}\right) \phi_{1, b}^{(k) \dagger}(y)\right)
\end{aligned}
$$

integrators

- Leapfrog integrator

$$
T_{t o t}(\Delta \tau)=T_{P}\left(\frac{\Delta \tau}{2}\right) T_{U}(\Delta \tau) T_{P}\left(\frac{\Delta \tau}{2}\right)
$$

- Sexton-Weingarten integrator

$$
T_{g e s}(\Delta \tau)=T_{U}\left(\frac{\Delta \tau}{6}\right) T_{P}\left(\frac{\Delta \tau}{2}\right) T_{U}\left(\frac{2 \Delta \tau}{3}\right) T_{P}\left(\frac{\Delta \tau}{2}\right) T_{U}\left(\frac{\Delta \tau}{6}\right)
$$

- higher order Leapfrog integrator with multiple timescales

$$
T_{i}\left(\Delta \tau_{i}\right)=T_{S_{i}}\left(\frac{\Delta \tau_{i}}{2}\right)\left\{T_{i-1}\left(\Delta \tau_{i-1}\right)\right\}^{N_{i}} T_{S_{i}}\left(\frac{\Delta \tau_{i}}{2}\right)
$$

- higher order Sexton-Weingarten integrator with multiple timescales

$$
T_{i}\left(\Delta \tau_{i}\right)=T_{S_{i}}\left(\frac{\Delta \tau_{i}}{6}\right)\left\{T_{i-1}\left(\frac{\Delta \tau_{i-1}}{2}\right)\right\}^{N_{i-1}} T_{S_{i}}\left(\frac{2 \Delta \tau_{i}}{3}\right)\left\{T_{i-1}\left(\frac{\Delta \tau_{i-1}}{2}\right)\right\}^{N_{i-1}} T_{S_{i}}\left(\frac{\Delta \tau_{i}}{6}\right)
$$

(1) Supersymmetric Hotspots

- the raise of supersymmetry
- the particle spectrum
- the consequences
- constructing a sym-theory
(2) PHMC-Algorithm
- the path-integral
- polynomial approximation
- evaluating the trajectory
(3) Action Improvements
- speed improvements
- signal improvements
(4) Matrix Inversions
- the reason why
- conjugate gradient algorithm

- krylov spaces
- matrix deflation
- domain decomposition

speed improvements

- two-step polynomial $\frac{1}{x} \equiv P_{n_{1}, n_{2}}(x)=P_{n_{1}}^{\prime}(x) P_{n_{2}}^{\prime \prime}(x)$ with noisy correction

$$
\frac{\mathrm{e}^{\eta^{\dagger} P_{n_{2}}^{\prime \prime}(\tilde{Q}) \eta}}{\int \mathcal{D}[\eta] \mathrm{e}^{\dagger^{\dagger} P_{n_{2}}^{\prime \prime}(\tilde{Q}) \eta}}
$$

- even-odd preconditioning ($\tilde{Q}=Q \gamma_{5}$)

$$
\begin{array}{r}
\tilde{Q}=\left(\begin{array}{cc}
\gamma_{5} & -\gamma_{5} \kappa M_{\text {even-odd }} \\
-\gamma_{5} \kappa M_{\text {odd-even }} & \gamma_{5}
\end{array}\right) \\
\rightarrow \operatorname{det} \tilde{Q}=\operatorname{det}\left(\mathbb{1}-\kappa^{2} M_{o e} M_{e o}\right)
\end{array}
$$

- determinant breakup

$$
\operatorname{det} \tilde{Q}^{2}=\left\{\left(\operatorname{det} \tilde{Q}^{2}\right)^{\frac{1}{n_{B}}}\right\}^{n_{B}}
$$

gauge action improvement

- both terms can be optimized

$$
S=\begin{array}{ccc}
S_{g} & + & S_{f} \\
\downarrow & & \downarrow \\
& \text { DBW2 } & \\
\text { STOUT }
\end{array}
$$

- a possible gauge action is

$$
S=\beta_{11} \sum_{\text {plaq }} \operatorname{Re} \operatorname{Tr}\left(1-\frac{1}{3} U_{\text {plaq }}\right)+\beta_{12} \sum_{\text {plaq }} \operatorname{Re} \operatorname{Tr}\left(1-\frac{1}{3} U_{\text {rect }}\right)
$$

$$
\begin{array}{c|c|c|c}
\text { Wilson } & \text { TISym } & \text { Iwasaki } & \text { DBW2 } \\
\beta_{12}=0 & \beta_{12}=-1 / 12 & \beta_{12}=-0.091 & \beta_{12}=-1.4088
\end{array}
$$

STOUT link smearing

- the $(n+1)^{t h}$ stout smeared "thick" link obtained iteratively from the $n^{\text {th }}$ level

$$
U_{\mu}^{(n+1)}(x)=\mathrm{e}^{i Q_{\mu}^{(n)}} U_{\mu}^{(n)}(x)
$$

- with

$$
Q_{\mu}(x)=\frac{i}{2}\left(\Omega_{\mu}^{\dagger}(x)-\Omega_{\mu}(x)\right)-\frac{i}{2 N} \operatorname{Tr}\left(\Omega_{\mu}^{\dagger}(x)-\Omega_{\mu}(x)\right)
$$

- and

$$
\Omega_{\mu}(x)=C_{\mu}(x) U_{\mu}^{\dagger}(x)
$$

- the staples C_{μ} are defined as

$$
\begin{aligned}
C_{\mu}(x)=\sum_{\nu \neq \mu} & \rho_{\mu \nu}\left(U_{\nu}(x) U_{\mu}(x+\hat{\nu}) U_{\nu}^{\dagger}(x+\hat{\mu})\right. \\
& \left.+U_{\nu}^{\dagger}(x-\hat{\nu}) U_{\mu}(x-\hat{\nu}) U_{\mu}(x-\hat{\nu}) U_{\nu}(x-\hat{\nu}+\hat{\mu})\right)
\end{aligned}
$$

some data from the analysis

(1) Supersymmetric Hotspots

- the raise of supersymmetry
- the particle spectrum
- the consequences
- constructing a sym-theory
(2) PHMC-Algorithm
- the path-integral
- polynomial approximation
- evaluating the trajectory
(3) Action Improvements
- speed improvements
- signal improvements
(4) Matrix Inversions
- the reason why
- conjugate gradient algorithm
- krylov spaces
- matrix deflation
- domain decomposition

the purpose of matrix inversions

- examine the Gluino-Propagator

$$
\langle T\{\lambda(x) \bar{\lambda}(x)\}\rangle=\langle T\{\lambda(x) \lambda(x)\}\rangle \mathcal{C}=2\left[\frac{\delta^{2} \ln \mathcal{Z}[J]}{\delta J(x) \delta J(y)}\right] \mathcal{C}
$$

- with the given partition function \mathcal{Z}

$$
\mathcal{Z}=\int \mathcal{D}[\lambda] e^{-\frac{1}{2} \lambda C Q \lambda}
$$

- we have to solve

$$
\langle T\{\lambda(x) \bar{\lambda}(x)\}\rangle=\left\langle Q^{-1}[U]\right\rangle
$$

- \rightarrow inversion of sparse matrices

conjugate gradient algorithm I

- instead of solving $z=Q^{-1} \omega$ we solve

$$
Q z=\omega
$$

$$
\text { (} \omega=\text { a given source, } Q=\text { the fermion matrix, } z=\text { solution vector) }
$$

- to find z, we use the conjugate gradient algorithm.
- the basic idea of CG is, that equivalent to solve $Q z=\omega$ is extremising

$$
E(z):=\langle\omega, z\rangle-1 / 2\langle Q z, z\rangle .
$$

- the gradient of E at z_{k} is

$$
g_{k}=\omega-Q z_{k}
$$

- conjugate gradient means now, to minimize E in a direction p_{k} instead of g_{k}. This direction is Q-conjugated, which means

$$
\left\langle Q p_{i}, p_{j}\right\rangle=0
$$

conjugate gradient algorithm II

- the algorithm step by step
(1) take a source ω and set initially $\omega=z_{0}$
(2) calculate the residuum

$$
p_{0}=r_{0}=\omega-Q z_{0}
$$

(3) for $n=1,2, \ldots$.

$$
a_{n}=\frac{\left|r_{n}\right|^{2}}{\left\langle p_{n}, Q p_{n}\right\rangle}, \quad z_{n+1}=z_{n}+a_{n} p_{n}, \quad r_{n+1}=r_{n}-a_{n} Q p_{n}
$$

(1) if $\left|r_{n+1}\right|^{2}<\delta$ then the solution is z_{n+1}, else calculate

$$
b_{n}=\left|r_{n+1}\right|^{2} /\left|r_{n}\right|^{2}, \quad p_{n+1}=r_{n+1}+b_{n} p_{n}
$$

and proceed with iteration

- is valid only for positiv definite hermitian matrices, \rightarrow extend to $B^{\dagger} A$ it can be used for any hermitian matrix A

krylov spaces I

- consider a system of linear equations $A x=b$ and the residual vector $r \equiv b-A x_{i}$ for an approximate solution x_{i}
- rewriting the system as

$$
(I-(I-A)) x=b
$$

- leads to basic iteration

$$
\begin{aligned}
x_{i} & =b+(I-A) x_{i-1} \\
& =x_{i-1}+r_{i-1} \\
& =x_{i-2}+r_{i-2}+r_{i-1} \\
& \vdots \\
& =x_{0}+r_{0}+r_{1}+\ldots+r_{i-1}
\end{aligned}
$$

krylov spaces II

- multiply $x_{i}=x_{i-1}+r_{i-1}$ with A from the left

$$
A x_{i}=A x_{i-1}+A r_{i-1}
$$

- and substract from b

$$
\begin{aligned}
b-A x_{i} & =b-A x_{i-1}+A r_{i-1} \\
r_{i} & =r_{i-1}-A r_{i-1} \\
& =(I-A) r_{i-1}
\end{aligned}
$$

- so finally we get

$$
\begin{aligned}
x_{i} & =x_{0}+r_{0}+(I-A) r_{0}+\ldots+(I-A)^{i-1} r_{0} \\
& =x_{0}+\left[r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{i-1} r_{0}\right]
\end{aligned}
$$

krylov spaces III

- this linear space defines the krylov subspace

$$
\mathcal{K}_{m}(A, r)=\operatorname{span}\left\{r, A r, \ldots, A^{m-1} r\right\} .
$$

- convergence is measured by the residual $r_{n}=\left|b-A x_{n}\right|$.
- more specificially, we seek an approximate solution x_{n} in \mathcal{K}_{n} by imposing the petrov-galerkin condition

$$
r_{n} \equiv b-A x_{n} \perp \mathcal{L}_{n}
$$

where \mathcal{L}_{n} is an n-dimensional subspace

- two broad choices:
- $\mathcal{L}_{n}=\mathcal{K}_{n}\left(A ; r_{0}\right) \leftrightarrow$ orthognoalisation (Arnoldi, GMRES, CG, GCR...)
- $\mathcal{L}_{n}=\mathcal{K}_{n}\left(A^{\dagger} ; r_{0}\right) \leftrightarrow$ bi-orthognoalisation (Lanczos, BCG, BiCGstab...)
on which circumstances is matrix deflation feasible?
- stochastic estimator technique

$$
\left\langle\eta_{i}^{\dagger} Z_{i}\right\rangle_{N_{\text {est }}} \stackrel{N_{\text {est }} \rightarrow \infty}{=} Q_{i i}^{-1}
$$

- collect informations about Q in each CG for the next step
- feed CG with a

$$
\begin{aligned}
& \text { galerkin-projected vector } \\
& \qquad x_{0}=W\left(W^{T} A W\right)^{-1} W^{T} b .
\end{aligned}
$$

SET
$Q z_{1}=\eta_{1 \alpha}$
\downarrow
$Q z_{2}=\eta_{2 \alpha}$
\downarrow
$Q z_{i}=\eta_{i \alpha}$
\vdots
$Q z_{N}=\eta_{N \alpha}$

- \rightarrow convergence will raise

deflation: the stathopoulos-orginos algorithm

- InitCG

ALGORITHM 1: BASISITERATION
iterative solution of $A y=c$
Initialisation
choose $y_{0} ;$
$s_{0}=c-A y_{0} ;$
$\omega_{0}=s_{0}$

Iteration

for $j=0,1, \ldots$ until covergence do
$\gamma_{j}=\left(s_{j}, s_{j}\right) /\left(\omega_{j}, A \omega_{j}\right)$;
$y_{j+1}=y_{j}+\gamma_{j} \omega_{j}$;
$s_{j+1}=s_{j}-\gamma_{j} A \omega_{j}$;
$\delta_{j+1}=\left(s_{j+1}, s_{j+1}\right) /\left(s_{j}, s_{j}\right)$;
$\omega_{j+1}=s_{j+1}+\delta_{j+1} \omega_{j}$;
end do

Algorithm 2: InitcG
iterative solution of $A x=b$

Initialisation

choose x_{-1};
$r_{-1}=b-A x_{-1} ;$
$x_{0}=x_{-1}+W\left(W^{T} A W\right)^{-1} W^{T} r_{-1} ;$
$r_{0}=b-A x_{0} ;$
$p_{0}=r_{0}$;

Iteration

for $j=0,1, \ldots$ until covergence do
$\alpha_{k}=\left(r_{k}, r_{k}\right) /\left(p_{k}, A p_{k}\right)$;
$x_{k+1}=x_{k}+\alpha_{k} p_{k}$;
$r_{k+1}=r_{k}-\alpha_{k} A p_{k}$;
$\beta_{k+1}=\left(r_{k+1}, r_{k+1}\right) /\left(r_{k}, r_{k}\right) ;$
$p_{k+1}=r_{k+1}+\beta_{k+1} p_{k} ;$
end do

eigCG

- generate an initial V with restarting-CG
- $T_{m}=\left(W^{T} A W\right)^{-1}$ is the lanczos-matrix
- in 8 . and 9 . we use raileigh ritz, to compute an orthonormal ritz basis for space $[Y, \tilde{Y}]$
- return nev ritz vectors from V

```
2. for \(j=0,1, \ldots\) until covergence do
        solve \(T_{m} Y=Y M\), for nev lowest eigenpairs
        solve \(T_{m-1} \tilde{Y}=\tilde{Y} \tilde{M}\), for nev lowest eigenpairs
        \([Q, R]=\operatorname{qr}([Y, \tilde{Y}, 0])\), and \(H=Q^{H} T_{m} Q\)
        solve \(H Z=Z M\) for 2 nev lowest eigenpairs
        Restart: \(V=V(Q Z)\) and \(T_{2 n e v}=M\)
        set the \(2 n e v+1\) column of \(T_{2 n e v+1}\) as \(V^{H} A r_{j}\)
    endif
    \(V=\left[V, r_{j} /\left\|r_{j}\right\|\right]\)
    end CG
```

1. $V=[]$;
2. standard CG iteration
3. update three elements of T_{j}
4. if $(\operatorname{size}(V, 2)==m)$
5. $\quad V=[] ;$
6. for $j=0,1, \ldots$ until covergence do
7. standard CG iteration
8. if $(\operatorname{size}(V, 2)==m)$
9. end CG

solver convergence

Figure: convergence of the solvers. the blue ones are the 24 incremental eigCG iterations, red the last 24 init-CG iterations

deflation: the lüscher algorithm

- at the beginning of each MD-trajectory, there will be fermion-fields $\phi_{l}(x), l=1, \ldots, N_{s}$ stochastically gernerated through a so called smoothing procedure
- then, they will be projected on non-overlapping Blocks Λ with

$$
\phi_{l}^{\Lambda}(x)= \begin{cases}\phi_{l}(x) & \text { wenn } x \in \Lambda \\ 0 & \text { sonst }\end{cases}
$$

Figure: often used blocksize 4^{4}

mode projection I

- a given field ψ can be projected with an orthogonal projector P on the space \mathcal{S}, which is spanned by the orthonormalbasis $\phi_{1}(x), \ldots, \phi_{N}(x)$

$$
P \psi(x)=\sum_{k=1}^{N} \phi_{k}(x)\left(\phi_{k}, \psi\right)
$$

- the complete system is combined by the "inner" system \mathcal{S} and an "outer" complementary System \mathcal{S}^{\perp}

$$
\psi(x)=\chi(x)+\sum_{k, l=1}^{N} \phi_{k}(x)\left(A^{-1}\right)_{k l}\left(\phi_{l}, \eta\right)
$$

- here we used the so called little Dirac-Operator

$$
A_{k l}=\left(\phi_{k}, D \phi_{l}\right), \quad k, l=1, \ldots, N
$$

mode projection II

Figure: deviation of the smallest eigenvalues

Figure: approximation of the lowest modes by a constant

comparison of the various methods

	Morgan/Wilcox	Stath./Orginos	Lüscher
Solver	GMRES / BiCGStab	CG	GCR
Matrix Type	non-herm. (Algebraic)	herm. (Algebraic)	non-herm. (Lattice)
Simultaneous solve	yes	yes	no
Eigenvalue use for multiple rhs's	every cycle (GMRES) beginning (BiCGStab)	every cycle, beginning $\left(s \leq s_{1}\right)$ restart $\left(s>s_{1}\right)$	every outer iteration
Algorithm acceleration	mild	large	small

Table: some points of comparison for the three algorithms considered

Kapitel1: Supersymmetric Hotspots

D. Talkenberger, Monte-Carlo-Simulationen von Modellen der Elementarteilchenphysik mit dynamischen Fermionen, Dissertation, Universität Münster, Oktober 1997.
R K. Spanderen, Monte-Carlo-Simulationen einer SU(2)
Yang-Mills-Theorie mit dynamischen Gluinos, Dissertation, Universität Münster, Oktober 1998.
C. Gebert, Störungstheoretische Untersuchungen der $N=1$ supersymmetrischen Yang-Mills-Theorie auf dem Gitter, Dissertation, Universität Münster, 1999
睩 S. Luckmann, Supersymmetrische Feldtheorien auf dem Gitter, Dissertation, Universität Münster, 2001
回 K. Müller, Einführung Supersymmetrie, Primer, Universität Zürich, Oktober 2002.

Kapitel2：PHMC－Algorithm

（1．Campos et．al．，Monte Carlo simulation of $\operatorname{SU}(2)$ Yang－Mills theory with light gluinos，［arXiv：hep－lat／9903014］

R．Peetz，Spectrum of $N=1$ Super Yang Mills Theory on the Lattice with a light gluino，PhD， 2003

目 M．Lüscher，A new approach to the problem of dynamical quarks， Nuc．Phys．B418，S．637－648， 1994
圊 I．Montvay，E．E．Scholz，Updating algorithms with multi－step stochastic correction，［arXiv：hep－lat／0506006］

圊 B．Gehrmann，The step scaling function of QCD at negative flavor number，PhD， 2002
E．E．Scholz，Light Quark Fields in QCD：Numerical Simulations and Chiral Perturbation Theory，PhD， 2005
E．E．Scholz，I．Montvay，Multi Step stochastic correction in dynamical fermion updating algorithms，［arXiv：hep－lat／0609042v2］

Kapitel3: Action Improvements

圊 Ph. Forcrand et.al., Search for Effective Lattice Action of Pure QCD, [arXiv:hep-lat/9608094v1]

R K. Jansen, I. Montvay, C. Urbach, et.al., Stout Smearing for Twisted Mass Fermions, [arXiv:hep-lat/90709.4434v1]
(in C. Morningstar, M.J. MPeardon, Analytic smearing of SU(3) link variables in lattice QCD, [arXiv:hep-lat/0311018]

Kapitel4：Matrix Inversions

Y．Saad，Iterative Methods for sparse linear systems，SIAM Philadelphia，PA，USA， 2003
－K．Spanderen，Monte－Carlo－Simulationen einer SU（2）
Yang－Mills－Theorie mit dynamischen Gluinos，Dissertation，Universität Münster，August 1998

回 G．Münster，I．Montvay，Quantum Fields on a Lattice，Cambridge Monographs on Mathematical Physics

R A．Stathopoulos，K．Orginos，hep－lat／0707．131v1
俥 M．Lüscher，Local coherence and deflation of the low quark modes in lattice QCD hep－lat／0706．2298v4

R．B．Morgan，W．Wilcox，Deflated Iterative Methods for Linear Equations with Multiple Right－Hand Sides math－ph／0405053v2

围 U．Wenger，Introduction to Lattice QCD algorithms，Lattice Practice Talk，27．11．06，Zeuthen

